

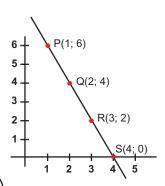
SECUNDARIA MATEMÁTICA

SISTEMAS DE ECUACIONES LINEALES

(Aplicación)

1. Recuerda

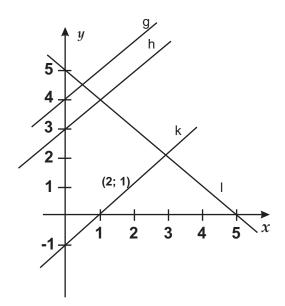
Ecuaciones lineales con dos variables



Para las ecuaciones lineales de la forma ax + by = c ($b \ne 0$) con las variables $x \in y$ se cumple:

- 1. Cada solución es un par ordenado.
- 2. Existen infinitas soluciones
- 3. La representación gráfica del conjunto solución es una recta.

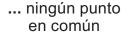
2. Indica una ecuación lineal con dos variables, cuyas soluciones determinan las rectas g, h, k, l



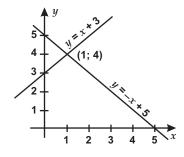
Sistemas de ecuaciones lineales con dos variables

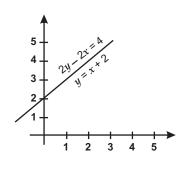
Dos ecuaciones lineales con dos variables pueden tener infinitas soluciones en común, exactamente una solución en común o ninguna solución en común, porque las soluciones de cada ecuación ax + by = c, con $a \ne 0$ ó $b \ne 0$, determinan una recta, y dos rectas pueden tener ...

...exactamente un punto en común



...infinitos puntos en común





$$y = x + 3$$
 e
 $y = -x + 5$
sólo tienen la solución
(1; 4) en común

$$y = x + 4$$
 e
 $y = x - 1$
no tienen ninguna
solución en común

$$y = x + 2$$
 e
 $2y - 2x = 4$
tienen infinitas soluciones
en común

$$CS = \{(1; 4)\}$$

$$CS = \{(x; y); y = x + 2\}$$

A dos ecuaciones lineales con dos variables se les denomina un **sistema de ecua- ciones lineales.**

A las soluciones comunes de las ecuaciones se les denomina soluciones del sistema de ecuaciones lineales.

Un sistema de ecuaciones lineales

I:
$$a_1x + b_1y = c_1$$

II: $a_2x + b_2y = c_2$

Puede tener exactamente una solución, no tener ninguna o tener infinitas soluciones.

Ejemplo

¿Cuántas soluciones tiene cada sistema de ecuaciones?

a)
$$1: -3x + y = 4$$

b) I:
$$6x + 3y = 12$$

II:
$$-3x + y = 2$$

II:
$$x - y = -1$$

Solución

Transforma las ecuaciones de tal manera que la pendiente y la coordenada de corte del eje y de cada recta puedan ser deducidas inmediatamente.

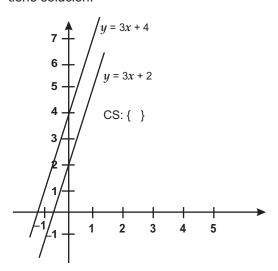
a) I:
$$-3x + y = 4$$
 \rightarrow I: $y = 3x + 4$

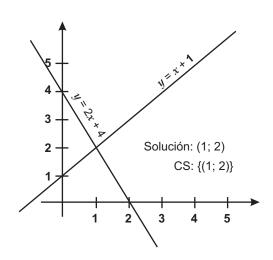
$$1: -3x + y = 2$$
 $1: y = 3x + 3$

Las rectas tienen las pendientes iguales pero cortan al eje y en coordenadas diferentes. Las rectas son distintas y paralelas, por lo que el sistema de ecuaciones no tiene solución.

a)
$$1: -3x + y = 4$$
 \rightarrow $1: y = 3x + 4$ \downarrow $1: y = 3x + 2$ \downarrow $1: x - y = -1$ \downarrow $1: y = -2x + 4$ \downarrow $1: y = x + 1$

Las rectas tienen distintas pendientes, es decir, se cortan; por lo que el sistema de ecuaciones tendrá exactamente una solución





3. Verifica si el par ordenado (9,5; 0,5) es la solución del sistema de ecuaciones

$$x + y = 10$$

$$x - y = 9$$

4. Determina gráficamente la solución del sistema de ecuaciones

$$y = 4x - 2$$

$$y = 5x - 4$$

ΤÚ Hazlo mismo

¿Cuántas soluciones tiene el sistema de ecuaciones? En caso que sólo tuviera una solución, determínala

a)
$$2x + 3y = 9$$

b)
$$x + y = 1$$

$$x - y = 2$$

$$x - y = 2$$
 $3y - 3x = 6$

- 2. g: y = x + 4
 - h: y = x + 3k: y = x - 1
 - 1: y = -x + 5
- 3. Si

